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Assumption: No Unmeasured 
Confounding
𝑋 contains all variables that 
influence both agent assignment 
and decision

Not Assumed: 
Overlap (Positivity)
Ρ(𝐴 = 𝑎 ∣ 𝑋 = 𝑥) does 
not have to be 
positive for all 𝑥, 𝑎.

We only assume each 
context is seen by 
some agents, not all 
agents

Conditional Relative Agent Bias: 𝐸[𝑌 𝑎 − 𝑌 𝜋 𝑥 ∣ 𝐴 = 𝑎, 𝑋 ∈ 𝑆]
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Estimating heterogeneity as causal contrast
Compare decisions of each agent with decisions of peers who see similar cases
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Individuals often make different decisions when faced with the same context, e.g.,
• Judges may vary in leniency towards certain offenses
• Doctors may vary in preference for how to start treatment for certain types of patients

Goal
Characterize the types of decisions where the identity of the decision-maker makes 
a substantial difference in the ultimate decision

Illustrative Example:  Judges vary in leniency towards misdemeanor cases

Challenge #1: What if judges simply see different types of misdemeanor cases?
Need to adjust for potential confounding factors

Challenge #2: Very few samples per judge
Hard to reliably estimate the bias for any individual judge 

Algorithm for finding regions of heterogeneity

Fit a model of the average treatment decision 
across all agents 𝑓 𝑥 = 𝐸[𝑌|𝑋 = 𝑥]

Assign agents to groups using average residuals: 
𝐺 𝑎 = 1 if 𝐸 𝑌 − 𝑓 𝑥 𝐴 = 𝑎, 𝑋 ∈ 𝑆] ≥ 0

Identify region as samples in upper quantile of 
predictions from fitting ℎ(𝑥) to 𝑦 − 𝑓 𝑥 𝐺(𝑎)

We propose an iterative algorithm that optimizes the objective above 

Conditional Relative Agent Bias
𝑄 𝑆, 𝐺 ≔ >
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𝑝 𝐴 = 𝑎 𝑋 ∈ 𝑆 ⋅ 𝐸[𝑌 𝑎 − 𝑌 𝜋 ∣ 𝐴 = 𝑎, 𝑋 ∈ 𝑆]

Weighted sum over biases of agents 𝐺(𝑎) = 1.

Causal objective for heterogeneity
Causal objective captures aggregate bias across binary grouping 𝑮 of agents over 
region 𝑺 without agent-specific models, an advantage when data for individual 
agents is scarce

We construct an objective using the conditional relative agent bias that was 
defined for estimating heterogeneity as causal contrast
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𝑄(𝑆, 𝐺) s.t. Ρ 𝑆 ≥ 𝛽

• For a given region 𝑆, this objective is maximized by choosing 𝐺 𝑎 = 1 if the bias of 
agent 𝑎 is non-negative on 𝑆. 

• Find optimal region 𝑆 subject to minimum size constraint:

Theorem 1: 𝑄(𝑆, 𝐺) can be identified as 𝐸[𝐶𝑜𝑣(𝑌, 𝐺∣𝑋) |  𝑋∈𝑆] 

We can then compute the region and grouping that optimize this objective

Example: Initial Treatment for Type 2 Diabetes
Region discovered by our algorithm aligns with clinical knowledge

Set-up:
• Predict metformin (typical 

recommendation from American 
Diabetes Association) vs other 
common first-line treatments1,2

• 3,576 patients and 176 group 
practices (agents)

Conclusions:
• Region 1: guidelines lacking 

where metformin is 
contraindicated3,4,5

• Region 2: no contraindications. 
Identifying why some doctors 
prescribe other medications can 
help standardize practice
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Semi-synthetic experiment

Dataset: Predictions of recidivism using COMPAS dataset collected from Mechanical 
Turk agents based on 5 risk factors6,7

Semi-synthetic data with ground truth regions of heterogeneity:
• Region 1: Drug possession charges
• Region 2: Misdemeanor charges for individuals under 35
4,550 samples are divided among 2, 5, 10, 20, 40, and 87 synthetic agents who are 
randomly assigned to one of two policies:
• Base policy: Learned on real agent predictions
• Alternative policy: Add systematic preference towards recidivism in region
Results:
• Region AUC evaluates classification with respect to true region

Our algorithm outperforms baselines in scenarios with many agents and few 
samples per agent

Baselines:
• Direct: Estimate 𝐸[𝑌|𝐴,	𝑋]	and 𝐸[𝑌│𝑋].	Identify region where agent is most 

informative, i.e. model with agents most outperforms model without agents.
• TARNet8: Predict 𝐸[𝑌|𝐴,	𝑋]	using shared representation with separate prediction 

heads per agent. Identify region with largest variation in counterfactual outcomes 
across agents, i.e. where VarA[𝐸[𝑌|𝐴,	𝑋]]	is largest.

• Heterogeneity in decision-making can be measured as a causal contrast
• Regions of heterogeneity can be found using an iterative algorithm

Conclusion
Finding regions of variation can help improve decision-making guidelines, 
increase fairness, and drive better outcomes
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